Semi-supervised Learning based on Bayesian Networks and Optimization for Interactive Image Retrieval

نویسندگان

  • Mai Yang
  • Jian Guan
  • Guoping Qiu
  • Kin-Man Lam
چکیده

In this paper, we present a novel interactive image retrieval technique using semi-supervised learning. Recently, Guan and Qiu [8, 9] have shown that by constructing a Bayesian Network where the nodes represent the (continuous) class membership scores and arcs represent the dependence relations of the data points, the (semi-supervised) classification problem can be formulated as a quadratic optimization problem; and by using the labeled data as linear constraints, the optimization problem yields a large, sparse system of linear equations which can be solved very efficiently using standard methods. In this work, we show that this semi-supervised learning method can be naturally adopted as a computational tool to incorporate users feedbacks for interactive image retrieval. We present experimental results to show the effectiveness of our new interactive image retrieval method. We also show that semisupervised learning can have advantages over supervised and unsupervised learning in image retrieval applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiautomatic Image Retrieval Using the High Level Semantic Labels

Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...

متن کامل

Instance-level Semisupervised Multiple Instance Learning

Multiple instance learning (MIL) is a branch of machine learning that attempts to learn information from bags of instances. Many real-world applications such as localized content-based image retrieval and text categorization can be viewed as MIL problems. In this paper, we propose a new graph-based semi-supervised learning approach for multiple instance learning. By defining an instance-level g...

متن کامل

A diffusion approach for interactive image retrieval

We study in this paper the problem of using multiple-instance semi-supervised learning to solve image Relevance feedback problem. Many multiple-instance learning algorithms have been proposed to tackle this problem; most of them only have a global representation of images. In this paper, we present a semi-supervised version of multiple instance learning. By taking into account both the multiple...

متن کامل

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

متن کامل

A Survey on Interactive Video Retrieval Using Active Learning Approach

Active learning is a machine learning technique which chooses the most informative models for labelling and uses them as training data. It has been extensively explored in multimedia research area for reducing human annotation effort. In this article, efforts of active learning in multimedia annotation and retrieval have been surveyed .The application domains such as image or video annotation, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006